An inequality from IMO 2009 Shortlist from Estonia

https://www.linkedin.com/feed/update/urn:li:activity:6806242615911182336
Let a, b, c be positive real numbers such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c$.
Prove that $\sum \frac{1}{(2 a+b+c)^{2}} \leq \frac{3}{16}$.

Solution by Arkady Alt, San Jose,California, USA.

Since $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c$ then $\sum \frac{1}{(2 a+b+c)^{2}} \leq \frac{3}{16} \Leftrightarrow$
(1) $\sum \frac{1}{(2 a+b+c)^{2}} \cdot \sum a \leq \frac{3}{16} \cdot \sum \frac{1}{a}$.

Homogeneous inequality (1) after normalization by $a+b+c=1$ becomes

$$
\sum \frac{1}{(1+a)^{2}} \leq \frac{3}{16} \sum \frac{1}{a}
$$

Noting that by AM-GM Inequality $1+a=3 \cdot \frac{1}{3}+a \geq 4\left(\frac{a}{3^{3}}\right)^{1 / 4} \Leftrightarrow(1+a)^{2} \geq \frac{16 \sqrt{a}}{3 \sqrt{3}}$ we obtain $\sum \frac{1}{(1+a)^{2}} \leq \frac{3 \sqrt{3}}{16} \sum \frac{1}{\sqrt{a}}$.
Thus, remains to prove inequality $\sqrt{3} \sum \frac{1}{\sqrt{a}} \leq \sum \frac{1}{a}$.
Since $\sum \frac{1}{a} \cdot \sum a \geq 9 \Leftrightarrow \sum \frac{1}{a} \geq 9 \Leftrightarrow \sqrt{\sum \frac{1}{a}} \geq 3 \Leftrightarrow \sum \frac{1}{a} \geq 3 \sqrt{\sum \frac{1}{a}}$
and $\sqrt{3 \cdot \sum \frac{1}{a}} \geq \sum \frac{1}{\sqrt{a}} \Leftrightarrow 3 \sqrt{\sum \frac{1}{a}} \geq \sqrt{3} \sum \frac{1}{\sqrt{a}}$ (obtained by replacing
(x, y, z) in $\left.\sqrt{3\left(x^{2}+y^{2}+z^{2}\right)} \geq x+y+z, x, y, z>0\right)$ then
$\sum \frac{1}{a} \geq 3 \sqrt{\sum \frac{1}{a}} \geq \sqrt{3} \sum \frac{1}{\sqrt{a}}$.

